
DOI: 10.1007/s10766-006-0028-8
International Journal of Parallel Programming, Vol. 35, No. 2, April 2007 (© 2007)

Amdahl’s Law Revisited for Single
Chip Systems

JoAnn M. Paul1,3 and Brett H. Meyer2

Received August 4, 2006; revised October 18, 2006; accepted November 17, 2006

Amdahl’s Law is based upon two assumptions – that of boundlessness and
homogeneity – and so it can fail when applied to single chip heterogeneous
multiprocessor designs, and even microarchitecture. We show that a perfor-
mance increase in one part of the system can negatively impact the overall
performance of the system, in direct contradiction to the way Amdahl’s Law
is instructed. Fundamental assumptions that are consistent with Amdahl’s
Law are a heavily ingrained part of our computing design culture, for
research as well as design. This paper points in a new direction. We moti-
vate that emphasis should be made on holistic, system level views instead
of divide and conquer approaches. This, in turn, has relevance to the poten-
tial impacts of custom processors, system-level scheduling strategies and the
way systems are partitioned. We realize that Amdahl’s Law is one of the few,
fundamental laws of computing. However, its very power is in its simplicity,
and if that simplicity is carried over to future systems, we believe that it will
impede the potential of future computing systems.

KEY WORDS: Amdahl’s Law; single chip heterogeneous multiprocessing;
performance; design; partitioning.

1. INTRODUCTION

Future single chip designs for portable and handheld computers are
expected to be multiprocessors, built around sets of heterogeneous

1ECE Department (Advanced Research Institute), Virginia Tech, 4300 Wilson Blvd.,
Suite 750, Arlington, VA 22203, USA. E-mail: jmpaul@vt.edu

2ECE Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
USA. E-mail: bhm@ece.cmu.edu

3To whom correspondence should be addressed. E-mail: jmpaul@vt.edu

101

0885-7458/07/0400-0101/0 © 2007 Springer Science+Business Media, LLC



102 Paul and Meyer

processing elements (PEs).(1–3) The applications these single chip hetero-
geneous multiprocessors (SCHMs) will execute will exhibit task-level het-
erogeneous concurrency, thus naturally motivating the use of multiple,
heterogeneous PEs.

Many popular “divide and conquer” design strategies such as
component-based design(4) and the orthogonalization of design concerns
in platform-based design(5) make similar assumptions that performance
may be improved in isolation. The value of specificity is measured in terms
of relative gains without considering that specificity may introduce system-
level losses in performance. For example, if the time to execute some algo-
rithm, such as JPEG, contributes significantly to the overall execution time
of the application, a system designer may seek to improve the overall exe-
cution latency of the application on a given design by improving the per-
formance of JPEG executing in isolation. The isolation of design decisions
has also motivated several efforts in application-specific processor (ASP)
generation tools; a popular area of research today is focused on fast ASP
synthesis.(6–10)

All of these approaches suffer from an assumption that improving
the performance of one part of the system will not degrade the perfor-
mance of another part. This basic assumption is supported by one of the
few, fundamental laws in computing, Amdahl’s Law,(11) which is taught
in every undergraduate computer architecture course. Amdahl’s Law is
a truly elegant law that seems inviolate. However, it also contains some
assumptions about the design space that fail to hold for SCHMs. As a
result, fundamental assumptions about how performance is increased – or
negatively impacted – in a design must be reconsidered. In this paper, we
re-visit Amdahl’s Law for SCHM designs. We motivate that performance
improvement considered in isolation can not only have small performance
impacts on the overall system (which was the original observation of
Amdahl’s Law), it can actually impede overall system performance. We
observe that properties of heterogeneity and finiteness were not presumed
to be factors when Amdahl’s Law was first conceived. We conclude with
some implications for the design of SCHMs.

2. SUMMARIZING AMDAHL’S LAW

The most fundamental of all speedup observations is Amdahl’s
Law(11) which states that the performance improvement realized by using a
faster mode of execution is limited by the fraction of time the faster mode
can be used.(12) We re-summarize Amdahl’s Law here, so that we may re-
visit it later in this paper.



Amdahl’s Law Revisited for Single Chip Systems 103

Suppose a system executes three tasks serially, T1, T2, and T3, for a
total execution time of 3. Suppose further that each task requires a com-
putation time (latency) of 1 or L(T1) = L(T2) = L(T3) = 1. Now suppose
that this same series of tasks executes on a new system, where one of the
tasks, T3 has a performance improvement from L(T3) = L to L(T3) = L′.
Amdahl’s Law states that the speedup of the system is limited by the seri-
alized fraction of time any one of the tasks executes. Thus, the speedup S

of the new system is limited to

S = 1(
1 − 1

3

)
+ 1

3
L′
L

.

This states that, in this case, as L′/L goes to zero, the absolute best
speedup is S = 1.5. The idealized speedup can only be achieved if the exe-
cution of task T3 can be completely done in parallel with the other tasks,
its serialization effectively eliminated and therefore no longer contributing
to overall system latency.

Another interpretation of Amdahl’s Law is that there are diminish-
ing returns for performance improvement of any one task (without loss of
generality we refer to “serialized fractions” normally associated with Am-
dahl’s Law as tasks). Thus, if the performance improvement of task T3
is an order of magnitude, or L′=L/10, then the speedup of the system
is only S = 1.42. The performance benefit to the overall system is clearly
much smaller than that of the task considered alone.

Amdahl’s Law has been used widely in the analysis and design of
computer architecture. It is normally used to point designers in the direc-
tion of where best to invest design effort and system resources. The clear
implication is that focusing on resources that help improve performance
over only a small portion of system execution can be wasteful. Another
clear implication is that there exists a positive relationship between the
performance improvement of any one task (or fraction) in the system and
the overall system performance. When the performance of any one task in
the system improves, the overall system performance will improve; however
small that performance improvement might be, a positive relationship to
overall performance is presumed to always exist.

This can be seen in Fig. 1, where three execution regions, r1, r2, and
f , are shown in an original application with overall Latency, L0. Accord-
ing to Amdahl’s Law, the best a designer can hope for is to remove the
time to execute the sequential fraction, f , by, for example, executing it
in parallel with the other regions of the application, thereby completely
removing its execution time. Thus, the best case, according to Amdahl’s



104 Paul and Meyer

Best 
Result When 
Improving a 
Sequential
Fraction f
According to 
Amdahl’s 
Law

f

L0
LA L0 f–=

f 0→

Original

r1

r2

r1

r2

Best Case

Fig. 1. Best result when improving a sequential fraction f according to Amdahl’s Law.

Law is shown on the right, with overall latency of LA = L0−f . The impli-
cation is that overall performance can only be improved by speeding up
the time it takes to execute f , that the lowest latency one can achieve is
LA, and that, if the original time it takes to execute f was a small frac-
tion of the time of the overall application, a designer’s time might be bet-
ter spent focusing elsewhere, where the dividends might be higher.

This conclusion, simple and powerful, contains two key assumptions,
that the resources upon which the regions execute are:

1. unbounded and
2. homogeneous

These assumptions are more specific ways of examining one overall
assumption of Amdahl’s Law: that the performance improvements are pre-
sumed to be isolated from one another. However, when resources must be
viewed as a trade-off within a bounded (finite) space, this assumption no
longer holds.

Amdahl’s Law was conceived in a day when parallel processing was
presumed to take up an entire room, or even rooms, of computing space.
The size of the computer had a logical boundary, but not necessarily a
definite physical one. Whatever limited the actual size of a computer might
vary. This is one reason scalability is such an important metric in par-
allel computing; scalability is targeted at identifying (and limiting) what-
ever impedes the performance benefits of systems as they grow in size. But
the things that impede scalability can include communications bandwidth,
topology, and even scheduling strategies. These are not, however, the over-
all size of the system, which is presumed to be able to grow (i.e., scale
positively).

By contrast, SCHMs have definite, finite physical extent. There is a
fixed boundary for the chip where the addition of one processor resource
may take away from the capabilities of the resources on the rest of the
chip. This is shown in Fig. 2.



Amdahl’s Law Revisited for Single Chip Systems 105

chip

region A

region B

Fig. 2. Customization in a finite-sized system.

The chip as shown consists of two regions, region B, which is shaded,
and region A, which is not. Region A is the “rest of the chip,” i.e., every-
thing else on the chip that is not part of Region B. Suppose region B
has been customized to optimize a subset of the application, such as the
sequential fraction, f , of Fig. 1. The real-estate on the chip dedicated to
improve the performance of f may greatly improve the performance of f .
However, what is the impact on the overall performance of the original
application, including code regions r1 and r2, that must also execute on
the same chip?

Motivated by this question, our own prior experimental results,(13),
and some recent SCHM architectures, discussed in the next section, we
examined this question in more detail.

3. MOTIVATION

Emerging single chip heterogeneous multiprocessors (SCHMs) might
be more appropriately described as “processors of processors” as opposed
to “processors of registers” or “processors of functional units (FUs).”
These designs have organizing principles around which multiple instances
of a class of single chip heterogeneous multiprocessor architectures might
be designed, analogous to a family of microarchitectures. The design style
of Systems-on-a-Chip (SoCs) has its origins in application specific inte-
grated circuits (ASICs) and embedded system design, which tends to focus
on the synthesis of a system for a given application (or set of applica-
tions). By contrast, SCHMs such as the Hyperprocessor,(14) the Cell,(15,16)

and the Sandblaster(17) are more general hardware solutions, which focus
on more general forms of programmability at the system (chip) level.
Each has initially focused on a class of applications. The Hyperprocessor
has focused on multimedia, the Cell on gaming, and the Sandblaster on
software-defined radio. However, each architecture is also open to facili-
tating different classes of applications.

The Hyperprocessor removes the restriction that tasks are statically
mapped to execute on resources most appropriate for the task type.



106 Paul and Meyer

. . .R11 R1n

. . .Rm1 Rmk

...

...

Queue

Input
OutputreludehcS

Fig. 3. SCHM with global task queue.

This opens up the possibility that system performance can be improved
if tasks execute immediately on available resources instead of waiting for
resources best suited to the task type. This situation is shown in Fig. 3.
This hypothesis was experimentally verified in Ref. 13, which introduced
Model-based Scheduling as a design strategy. Here a scheduler on each
processing element in a SCHM is designed to the context of both a model
of the performance capabilities of other elements in the system and the
state of the system. Thus, the individual processing capabilities of the sys-
tem, the current loading situation of the system, and the size and content
of the datasets being processed by a set of tasks are all considered when
processing tasks in a common task queue. The Cell and the Sandblaster
can also utilize this more general approach to programming the system.
Current research in the programming model for the Cell explores the use
of a customized version of the Linux operating system, where scheduling
decisions can also be made dynamically and at the chip level.

Amdahl’s Law informs us that improvement in the performance of
any resource of Ref. 3 will lead to overall system improvement; the only
question is how much the resource is utilized over the execution period of
interest. If this is not true, then Amdahl’s Law cannot be used to inform
designers of future SCHMs. Motivated by this question, we sought to
investigate and illustrate it through a set of fundamental experiments, as
well as propose some implications for designers of future SCHMs.

4. HETEROGENEOUS MULTIPROCESSOR SYSTEMS

Consider a SCHM where tasks are always mapped to the optimal
resource, and stored in queues locally if the resource is not immediately
available. Intuitively, in situations with aperiodic input behavior, the sys-
tem may become load-imbalanced with some queues close to capacity
while others are empty if performance is narrowly focused on the execu-
tion latency of individual tasks. Tasks of the same type are competing for
a common resource, creating a bottleneck.

However, with a global task queue and global scheduler, the system of
Fig. 3 can respond to loading situations by executing tasks on processor



Amdahl’s Law Revisited for Single Chip Systems 107

resources other than the one that provides the best performance for the
task type. This affords more possibilities to respond to dynamic loading
situations, since it is often better to schedule tasks that start sooner, but
take longer to execute, than to wait for a resource that might provide
faster execution time.(18,19) However, now the system-level effects of using
a performance-tuned PE are more difficult to determine.

Motivated by how the Model-based Scheduling Example provided
performance enhancement for a system like that of the Hyperprocessor
and Fig. 3, we conducted further experiments on the Model-based Sched-
uling Example described in Section 3 in order to understand in more
detail what lead to system speedup. In the following experiments, as well
as in the Model-based Scheduling Example, tasks that execute on mul-
tiple resource types are presumed to be compiled for multiple resource
types, i.e. multiple copies of the tasks are presumed to exist in the local,
instruction memories of each processor that might execute each task type.
Other methods might use dynamic binary translation. Either way there
is overhead involved, one has impacts on space while the other has
more impacts on execution time. We believe that the cost-benefit of intro-
ducing overhead to accommodate global design concerns in SCHMs is
analogous to caches and branch predictors in microarchitecture – these
are design elements that facilitate performance, but are really overhead
that happen to facilitate overall performance. This is discussed further in
Section 6.

4.1. Experiments

Our investigation begins by isolating how system speedup is affected
by scheduling policies in specific situations.

We evaluated the total execution latency of tasks executing on a
SCHM for a system structured like that in Fig.3. However, we fixed the
input queue at three tasks and the number of processing elements in
the system at two, so that we could isolate the latency of the processing
time of the three tasks on the two heterogeneous processor resources. The
example system is shown in Fig. 4. We define the experimental parameters
of the system as:

• tasks = {T1, T2, T3}, Ti ∈ {gzip, wavelet, quantization},
• HM = {R1, R2, X}, Ri ∈ {ARM, DSP},
• X ∈ {X1, X2}, global, dynamic schedulers defined later,

where HM is an abbreviation for Heterogeneous Multiprocessor.
In this system three tasks, T1, T2, T3, appear in order in the input

queue of the system of Fig. 4. They are scheduled onto two processor



108 Paul and Meyer

R1 R2

Queue X ,re ludehcS

T1
T2
T3

tasks SCHM

Fig. 4. Example system.

resources, R1, R2, by a global dynamic scheduler, X, which is one of two
scheduler types (discussed later). Ti is one of the possible task types, which
in this case are gzip text compression, wavelet transform and zerotree
quantization. Each task in the input queue can be any of the three task
types, and all possible permutations are considered. R1 and R2 are the
processors, an ARM and a digital signal processor (DSP) for this exam-
ple. The schedulers are aware of only the first item in the queue and the
state of the processors. The relative performance differences of each of the
three tasks on the two processors is summarized in Table I.

Maximum system latency L(tasks, HM), is how long it takes for all
tasks to complete. Tasks are scheduled by order of appearance in the
queue, but otherwise have no dependencies. A system, SCHM, becomes a
different system, SCHM ′, when any of R1, R2, or X are altered. L(tasks,
HM) was evaluated using two global dynamic scheduling policies, X1
and X2.

The two global dynamic schedulers, X1, X2, used in our experiments
differ in how they determine on which processor T3 should be scheduled.
Both schedulers schedule tasks T1 and T2 on the best available resource
by order of appearance in the queue. This translates to T1 being sched-
uled on the optimal processor for its task type. T2 is then scheduled on
the other processor since it is the only processor available. X1 then sched-
ules T3 on the first resource to become available (since both are busy when
T3 is considered for scheduling), while X2 schedules T3 on the better per-
forming resource for the task type of T3.

Table I. Relative Task Performance

gzip wavelet quantization

ARM 2 0.5 2
DSP 1 1 2



Amdahl’s Law Revisited for Single Chip Systems 109

We specifically constructed the example this way in order to isolate
the effects of serialization and speedup in SCHM systems. Speedup is nor-
mally considered when there is some serialization present. If all tasks can
execute in any order, then speedup is trivial to consider. In this case, the
serialization is the order of tasks in a queue. The first two tasks in the
queue must be started before the third. Thus the third task has a sim-
ple serial dependency, but since our objective is to distill an observation,
this simple serialization is adequate for our purposes. Our goal is to iso-
late the effects of scheduling decisions on task types, given some ordering
of the system that provides a baseline loading condition (the scheduling of
the first two tasks) and a decision to be made about how task type can
be dynamically scheduled onto processor type, considering the capabilities
of the processor resources and the system loading encountered when the
scheduling decision is made.

In our experiments, we found that when T1 = wavelet, T2 = wavelet,
T3 = gzip and the scheduling policy is changed from X2 to X1, the sys-
tem latency improves even though the performance of T3 is individually
degraded. This is illustrated in Fig. 5.

In this case T1 is scheduled on the ARM, and T2 on the DSP, which
means that each processor in the system is processing a wavelet job. How-
ever, because the DSP processes the wavelet jobs twice as fast as the
ARM, the DSP becomes available well before the ARM becomes avail-
able. Thus, even though the processing time of the gzip job remaining in
the queue, T3, would be twice as fast on the ARM as it would be on the
DSP, it is more beneficial to overall system latency to schedule the gzip
task sooner and process it slower by scheduling it onto the DSP, rather
than wait for the resource for which it is more suited, the ARM.

While the observation that execution latency can be improved by
degrading the performance of a particular task is not an intuitive result,
it has been observed as a scheduling anomaly on homogeneous proces-
sors.(18) However, in our example, we considered the effect not as an
anomaly – an undesirable result – but a design trade-off. This observation

ARM
DSP

ARM

DSP Time

SCHM

SCHM’

0 0.5 1.0 1.5 2.0 2.5

T1

T2

T3

Fig. 5. ARM/DSP timing diagram.



110 Paul and Meyer

prompted us to re-visit the concept of speedup, which we then use to re-
visit the use of application specific processors in SCHMs.

We have illustrated that this can occur when heterogeneous tasks
share heterogeneous resources as in systems of the type of Fig. 3, and that
performance improvement of any one task cannot be isolated. Speedup is
a trade-off and cannot be considered in isolation.

While this effect is not unique to SCHMs, this effect is more exposed
in SCHMs because of the coarse granularity of tasks and processors as
opposed to instructions, functional units and registers in conventional pro-
cessors. It is additionally exposed for SCHMs because performance has
a tendency to be evaluated more as latency for specific applications as
opposed to throughput over a number of instruction (or in the case of
SCHMs task) types.

This is because in many SCHM applications, such as multimedia,
games, and software-defined radio, applications persist in the system over
a long period of time (which is a common assumption in embedded sys-
tem design), but the system are also multi-modal, i.e., different applications
may exist in the system at different points in time.

5. AMDAHL’S LAW REVISITED

Amdahl’s Law suggests that design decisions that speed up the exe-
cution of any task, or execution region, leads to systems-level speedup
(however small). This is illustrated once again, in Fig. 6, which is Fig. 1
re-drawn to include what we observed.

In Fig. 6, once again, the leftmost line represents the critical execu-
tion path of a system with serialized execution latency L0. In this system,
r1 and r2 denote the latency of regions surrounding a third region with
latency f . The region with latency f represents some sequential fraction
of execution targeted for performance improvement.

We observed that, as the contribution of f to the total system latency
goes to zero, system latency behaves in one of two ways. In case A, the

Two 
Speedup 
Effects 
When 
Improving a 
Sequential
Fraction f

f

L0
LA L0 f–=

f 0→

Original

r1

r2

r1

r2

Case A

LB L0>

r1’

r2’

Case B

OR

Fig. 6. Two speedup effects when improving a sequential fraction f .



Amdahl’s Law Revisited for Single Chip Systems 111

system latency is LA = r1 + r2 and the system speedup is

S = r1 + f + r2

r1 + r2
.

Speedup is greater than 1 and overall system performance is improved.
This is Amdahl’s Law. The performance improvement has been made to
f either completely independent of r1 and r2 or with the assumption that
any change in the design that contributed to the performance improvement
of f produced negligible effects on the performance of regions r1 and r2.

In contrast, case B shows the effect we observed experimentally, first
by our work in Ref. 13 and again in the much simpler, distilled example
in this paper.

In case B, by improving the performance of the fraction f we
observed that performance in regions r1 and r2 (or both) were affected
adversely enough so that total latency of the system was actually made
worse by improving the execution time of f .

Stated another way, even though performance of the region f was
improved, the effect that led to the performance improvement of f caused
r ′

1 + r ′
2 > r1 +f + r2, so that S < 1 for case B. Overall system performance

has been degraded instead of improved because of side effects introduced
by improving the performance of f .

Significantly, this observation is not limited to the case when hetero-
geneous tasks execute on heterogeneous resource types. In any system, the
improvement of the execution of sequential fraction, f , can come at such
a price that the execution of regions r1 and r2 is adversely affected. This
is analogous to an extremely large Region B in Fig. 2, at the expense of
smaller chip real-estate left over to process regions r1 and r2.

As a further illustration, consider a uniprocessor system that lacks
a floating point unit, but spends 50% of the time emulating floating
point. Adding a floating point unit would likely benefit the overall system
speedup. However, if the addition of the floating point unit causes other
architectural features of the processor to be removed or made smaller or
less complex, such as the caches, register files, and branch predictors, then
the performance improvement provided by the floating point unit may well
be more than offset by the performance degradation when the system is
executing something other than floating point operations. The addition of
the floating point unit in this case must be considered with respect to
more than just its utilization and the diminishing returns it may provide to
overall system speedup, i.e., more than what Amdahl’s Law tells us. In this
case, it represents a trade-off where speeding up one part of the system



112 Paul and Meyer

may slow down the other parts to the point that a local speedup does not
reflect a more global, or system-level speedup.

The simple microarchitecture example suggests that the failure of Am-
dahl’s Law to capture finite systems is an observation that has been with
us for some time. And yet, Amdahl’s Law continues to be taught, with-
out qualification, and its basic assumptions continue to be used to justify
significant research efforts that, instead of considering global, system-wide
effects, focus on “divide and conquer” component views.

6. IMPLICATIONS

With new fundamental models come implications for designers. In
this section, we focus on three of what we feel are the most significant
ones. The first focuses on the impact of processor specificity. Consider-
able research effort is devoted to fast generation of custom processors. We
attempt to shed light on the relative merits of fast, custom processor gen-
eration vs. focus on system-level design. The second examines the impacts
of custom chip-level schedules that can take advantage of heterogeneous
processor resources, even if the processor resource is not ideally suited to
a given task. The third examines the implications of chip-level partition-
ing, away from side-by-side partitioning towards global-local forms of par-
titioning.

6.1. Processor Specificity on an SCHM

The previous illustration focused on the impact of scheduling policy
given a set of heterogeneous PEs. However, designers of SCHMs will also
have the opportunity to select the numbers and types of PEs on a chip.
The question in this case is: given a set of tasks and a scheduling policy,
what is the best set of heterogeneous processors for a system? Motivated
by our previous observation, it seems intuitive that processor specificity
could sometimes have an adverse impact on overall system speedup for a
chip of fixed area; different processor types might either create an access
bottleneck, or be a poorer performer than some other processor on tasks
the system might execute more often.

When we set out to examine the effects of processor specificity within
an SCHM, we found no models that relate task type, processor type, and
performance. And yet intuitively, DSPs perform better on DSP task types
because DSP task types include more instructions or instruction patterns
that execute more efficiently on a DSP, with the implication that those
same patterns execute more poorly on a more general purpose processor
(GPP). While many processor designers think in terms of broad categories



Amdahl’s Law Revisited for Single Chip Systems 113

of task types, heterogeneous multiprocessor designers must be aware of
finer-grained differences in task types, and the corresponding relationship
with processor type. We postulate what such relationships might look like
and why. We begin by developing a processor classification given a set
of tasks. To make such comparisons fair, processor types are presumed
to have made sacrifices for their specificity – DSPs, for example, may
have given up sophisticated branch prediction in exchange for a variety of
advanced arithmetic operations.

Our classification in this section has been based on intuition: we do
not claim to have derived it experimentally. We realize that the relation-
ships we assert will be different given a different sets of tasks. Our point
is only that it should be possible to order tasks by type where a fixed
amount of complexity (instructions, lines of code or some other mea-
sure) results in different performance on different processor types. This is
required in order to have a meaningful discussion of heterogeneity and
the role application specificity plays in the broader vision of SCHMs and
other heterogeneous multiprocessors, since it allows us to compare proces-
sor types of varying specificity.

6.1.1. Relating Task and Processor Types

We presume we can order a set of tasks {T0, T1, . . . , Tn} by similar-
ity of type (similarity may be defined in a number of ways – e.g., quan-
tity of memory accesses, amount of times a certain operation used). Tasks
close to one another in the type sequence exhibit similar performance
on a given PE type. This seems reasonable since all tasks can be broken
down into instructions, which can be counted and ordered by similarity.
Next, we classify PEs in four broad categories of: GPPs, custom hard-
ware (CH), ASPs, and class-specific processors (CSPs). Note that CSPs
are more commonly referred to as domain-specific processors, but we use
the name class-specific to differentiate our abbreviation, CSP, from that of
DSPs. Then, we build a set of relationships between task type and proces-
sor type according to their normalized performance. The normalized per-
formance of a PE executing a task T0 is the rate at which it is able to
execute units of complexity of task T0 relative to a GPP (GPPs have con-
stant normalized performance).

In GPP design, effort is only invested in architectural features that
can accelerate general execution. Since GPPs are (ideally) designed to exe-
cute all tasks equally well, we show the normalized performance of GPPs
as a constant. CH, by contrast, is specifically designed to compute a sin-
gle task and no others; CH is not a generally programmable device. The
normalized performance of CH is thus undefined for all tasks but the one



114 Paul and Meyer

for which it is designed, but CH typically performs better than any other
PE for the specified task, in this case, T0.

We consider ASPs a hybrid between GPPs and CH. ASPs are pro-
grammable (Turing complete) processors with special purpose hardware
integrated into their datapaths. As a result they are designed to execute
a narrow class of tasks especially well. For example, motion estimation
in MPEG might be executed as a single, custom instruction in an ASP.
An ASP performs best when executing task T0, which could be conceived
of as the custom hardware being repeatedly accessed in a tight loop with
no other instructions executed by the processor (e.g. constantly executing
motion estimation). The peak performance of ASPs tapers off when exe-
cuting tasks that make less use of its custom hardware or instruction. The
performance of tasks “far away” from T0 may actually exhibit poorer per-
formance than if they were executed on a GPP; this makes intuitive sense,
since there is at least some overhead associated with the extra hardware
that is not being utilized by tasks far away from T0.

We define CSPs as processors that provide performance improvement
over that of a GPP for a broader range of tasks than an ASP. Probably
the most common CSPs are DSPs, where features like multiply-accumulate
units (MACs), floating point units (FPUs), vector operations and support
for complex arithmetic provide support for a broad class of applications
that can take advantage of these features. Because compilers tend to pro-
duce patterns of instructions, the performance curve for CSPs is presum-
ably flatter than for an ASP, where the special hardware is often accessed
by hand insertion of a call.

The normalized performance of all PE types for a set of tasks
{T0, T1, . . . , Tn} is summarized in Fig. 7. In the figure, the right-most task,
T0, orients the shape and size of the set of curves.

Fig. 7. PE performance summary.



Amdahl’s Law Revisited for Single Chip Systems 115

6.1.2. Performance Operating Regions

In order to explore the impact processor specificity has when the
SCHM executes multiple task types of varying similarity on multiple
processor types, we divided Fig. 7 into six operating regions {A1, A2, A3,

A4, A5, A6} as shown in Fig. 8.
Regions A5, and A6 are marked by the increased relative proficiency

of GPPs, which is intuitive under the assumption of constant design cost
(e.g., area, complexity). CSPs and ASPs make use of hardware not pres-
ent in a GPP to implement special functionality. Given our concept of
normalized performance, the same real-estate would be used on a GPP
to accelerate control flow with logic dedicated to branch predictors, trace
caches and the like which improves the performance of all tasks. For some
tasks, the gains from special functionality in ASPs and CSPs will be over-
come by the GPP.

When comparing real processors, the boundaries of GPP/CSP/ASP
are quite fluid. However, the shape of regions A1, A2, and A3 is at least
consistent with the performance of real ASPs and CSPs. In Ref. 20 an
application specific DSP (ASDSP) is discussed and tuned to perform FFT
operations. It excels when compared with two general DSPs (30% average
improvement). Since the proposed architecture actually reduces the area
needed for its data processing unit relative to a comparison DSP, it is
reasonable to conclude that the ASDSP may perform worse than compar-
ison DSPs for some other set of DSP tasks.

Next consider a set of PEs executing Telemark, a benchmark in the
Embedded Microprocessor Benchmark Consortium (EEMBC) benchmark
suite.(21) A BOPS Manta v.2, a DSP with indirect VLIW, performs 70% bet-
ter than a IBM 405GPr-200, a GPP, only on a subset of autocorrelation
tasks and 60% worse otherwise, making it an ASP over the Telemark

Fig. 8. Operating regions for processor classes.



116 Paul and Meyer

kernels. On the other hand, an Infineon Carmel 10xx-170, a DSP with
CLIW, outperforms the GPP on all autocorrelation tasks by an average
of 40%, and on a subset of fixed-point bit allocation tasks by 500%, but
32% worse otherwise. This makes it application specific over fixed-point
bit allocation but class-specific over autocorrelation.

6.1.3. Illustration

Using the regions of Fig. 8, we ran a set of experiments to exam-
ine the potential impact of processor type specificity on overall system
speedup. As in Section 4, we define the experimental parameters of the
system as:

• tasks = {T1, T2, T3}, Ti ∈ {A1, A2, A3, A4, A5, A6}, the operating regions
defined and discussed in Section 6.1.2

• HM = {R1, R2, R3}, Ri ∈ {ASP, CSP, GPP}, the processor types
defined and discussed in Section 6.1.1

• X ∈ {X1, X2}, the schedulers discussed in Section 4.

The relative processor power for the center of the operating regions of
Fig. 8 used in our experimentation is in Table II. While these are arbi-
trarily assigned they are consistent with reasonable performance relation-
ships for a given task type.

Note in particular that the ASP is an order of magnitude better than
the CSP while executing in region A1.

As before, three tasks are scheduled onto two processor resources and
the system latency is measured. However, in these experiments PEs are
varied instead of the system scheduling the types. Figure 9 illustrates one
example of our experimental findings.

For SCHM in Fig. 9, T1 = A3, T2 = A2, T3 = A1, X is X1. T1 and T2
are first scheduled, one on each ASP. Since the scheduling policy for
SCHM is X1, T3 is scheduled on the first available PE. Because T1
is an A3 task, it takes longer to execute on an ASP than T2 and T3

Table II. Relative Performance

Region

PE type A1 A2 A3 A4 A5 A6

ASP 10 1 0.5 0.5 0.5 0.5
CSP 2 2 2 1.5 0.87 0.75
Gpp 1 1 1 1 1 1



Amdahl’s Law Revisited for Single Chip Systems 117

ASP
ASP

ASP

CSP

Time0 0.5 1 1.5 2

T1

T2

T3

SCHM

SCHM’

Fig. 9. Example timing diagram.

combined; the system latency for SCHM is 2, and the latency of T3 is 0.l.
SCHM′ uses a CSP in place of one of the two ASPs. When T1 is sched-
uled, the CSP is the best available processor; T2 is scheduled on the ASP.
T3 is again scheduled on the first available processor, which in this case is
the CSP, which executes T3 more slowly than an ASP. Despite this, the sys-
tem latency of SCHM ′ is improved over SCHM at 1. The latency of T3 is
0.5.

The presence of the ASP improved the performance of task T3 at the
expense of overall system performance by trading off the performance of
T3 for the performance of T1. A more general class of processor improved
overall system performance. The impact of believing that individual tasks
executing on individual resources may be optimized in isolation is clear:
by focusing performance improvement in part of the SCHM, making a
custom processor that improves part of the task set but hinders some
other, overall performance can suffer. Instead, more general processors
might be more useful, when used with global scheduling techniques.

6.2. Impacts of Global Scheduling

We summarize the example used in Ref. 13 because it motivated a
more detailed consideration of the design principles that lead to this paper,
as well as provides some insight as to the impact of global scheduling.
The system is a simple “multimedia” system consisting of two heteroge-
neous processors (a Renesas M32R, hereafter referred to as a DSP, and
an ARM) to handle a mixture of image and text compression applications.
The image compression algorithm is composed of two sequential tasks:
a wavelet transform and zerotree quantization. The wavelet step trans-
forms the image into a series of frequency sub-bands using digital filter
techniques. Zerotree quantization then selects data to discard using control
intensive algorithms. Text compression is performed using the gzip pro-
gram that looks for redundant data patterns in plaintext, mainly stressing
memory bandwidth and latency.

Each processor in this system was observed to execute the three tasks
at different rates relative to one another. The DSP has a MAC instruction



118 Paul and Meyer

that makes it better suited for performing wavelet transforms. While both
processors are equally adept at quantization, the ARM is approximately
twice as fast at gzip text compression and the DSP is approximately twice
as fast at the wavelet transform.

Processing inputs from a testbench that streamed compression pack-
ets at a Poisson rate, in order to explore a wide variety of data-depen-
dent effects, a model-based scheduler was able to provide the best overall
system performance by intelligently scheduling jobs onto “inappropriate”
resources sooner rather than wait for the optimal resource when loading
became too severe (i.e. too many wavelet tasks waiting for the DSP). It
was possible to improve system performance by taking advantage of more
situations where individual tasks would actually execute slower on the pro-
cessing resource least suited to its task type. It was also possible to intro-
duce the overhead of gathering system information, including state about
the system resources, utilize a more complex scheduling algorithm, and
execute tasks on “inappropriate” resources, and still experience overall per-
formance gains. The benefits of introducing the overhead of system-level
coordination have analogies to microarchitecture, where caches and branch
predictors introduce overhead that winds up improving the overall perfor-
mance of this processor.

This points in the direction of the importance and impact of sys-
tem, i.e., chip-level, global decision making. The clear implication is that
more research efforts should go into the hardware and software support
for minimization and optimization of information upon which global deci-
sions are made. This is, potentially, a more fruitful area than one in which
isolated performance regions are sped up with custom resources.

6.3. Global-Local Partitioning

The previous sections show that custom performance tuning of pro-
grammable processing elements to applications, without consideration of
how they impact the overall performance of a chip, may negatively impact
overall performance. With increases in overall complexity on all systems
comes the likelihood that systems will exhibit multiple modes of operation,
including modes that cannot take advantage of the performance special-
ization of some custom processors. For example, a cell phone is often
used in ways that have nothing to do with actually making a call. Other
modes of operation for the same device require different resources. Many
design tools and much research effort is expended towards the goals
of divide and conquer and the generation of custom design elements.
Amdahl’s Law supports this widely held view that divide and conquer
design strategies are adequate ways to handle performance. This results in



Amdahl’s Law Revisited for Single Chip Systems 119

what might be thought of as a horizontal, or side-by-side view of parti-
tioning of a chip. However, horizontal partitioning fails to capture global
design concerns.

To point in the direction of new ways of thinking about system par-
titioning, we include a simple illustration of the existence of two kinds of
state in a single chip. The first kind of state is that which is grouped into
horizontal regions conventionally associated with divide and conquer par-
titions. This is conventional state that we will refer to as “computation
state” since it is normally associated with the carrying out of some spe-
cific functionality. The second kind of state is which is global to all regions
of the chip. Since global state might be thought of as providing a layer
across all elements of the chip, it might be thought of as a logical vertical
partition. The most natural way to think of state that belongs to a global
region is system state, since state in a global region is likely to have bene-
fit only if it is used to coordinate activities across multiple regions of the
chip.

Figure 2 shows the partitioning of a chip into two regions, one pre-
sumed to benefit one kind of application and the remainder of the chip.
This kind of partitioning is typical of many hardware designs where the
emphasis is placed upon individual components and their integration. This
can be thought of as horizontal, or side-by-side partitioning, which cre-
ates local domains (such as processing elements) on the chip. However, our
observations suggest that the horizontal, or local-local, partitioning asso-
ciated with hardware design is insufficient for single chip, finite systems
where global decision-making is important.

By contrast, Fig. 10 shows each chip partition divided into two kinds
of state, where the ci represent computation state and the si represent sys-
tem state. Since system state is state around which chip-level decision mak-
ing can be made it must be considered global to the chip. Figure 10 is
shown partitioned into nine computation blocks, indicated by the squares
with the [ci,si] pairs as labels, divided by a diagonal line on each block.
Classical, horizontal, or local-local, partitioning considers the division of
the chip into partitions by space and the kind of labor the chip does.
While the partitions are shown as identically-sized for the sake of simplic-
ity, it may be that block [cl, sl] takes up a large region of the chip. Thus,
region B of Fig. 4 might correspond to block [cl, sl] while all of the other
blocks might correspond to region A of Fig. 4.

With increased complexity on a given chip comes the ability to exe-
cute applications with increased complexity and heterogeneity. On many
single chip systems each region is a programmable processing element that
while considered more optimal for one type of application vs. another
is still Turing complete. This means that any task is potentially capable



120 Paul and Meyer

s1 s2 s3

s4 s5 s6

s7 s8 s9

c1 c2 c3

c4 c5 c6

c7 c8 c9

Fig. 10. Illustration of global-local partitioning.

of executing anywhere. A chief concern then is the utility of any given
region on the chip. Most applications will persist in future systems over
long periods of time (unlike batch jobs of days of old). Most systems
will also be multi-modal, where few, if any, applications persist in the
system 100% of the time. Thus, each resource in the system can be pro-
grammed to take on one or more applications, potentially even dynam-
ically. The cost of reconfiguring the system can be considered the cost
of implementing and making decisions about system state, which is state
that is treated as global state, even if it is logically distributed on the
chip.

We propose the need to consider two forms of partitioning of a chip:
(1) local–local partitioning, or the partitioning of the chip into the ci
blocks in the first place, where local applications are computed and (2)
global–local partitioning, or the partitioning of each of those ci blocks
into a contribution to overall, chip-level system state, the si. Examples
of the benefits use of system state to make decisions can be found in
Ref. 22. Tools and design strategies must support the cost-benefit analysis
of global-local partitioning.

7. OBSERVATIONS AND CONCLUSIONS

Amdahl’s Law is based upon two assumptions – that of boundlessness
and homogeneity – and so it can fail when applied to single chip heteroge-
neous multiprocessor designs, and even microarchitecture, as well as other
computer systems.



Amdahl’s Law Revisited for Single Chip Systems 121

We re-examined the implications of Amdahl’s Law on SCHM designs,
by re-examining the assumptions upon which it is based. By showing
the limitations and assumptions inherent in Amdahl’s Law, we motivate
the need to reconsider research and design efforts that focus on divide
and conquer. Instead, we advocate the need to develop tools, techniques,
researcher and designers that can support holistic evaluations.

We realize that Amdahl’s Law is one of the few fundamental laws of
computing. However, its very power is in its simplicity, and if that sim-
plicity is carried over to future systems, we believe that it will impede the
potential of future computing systems.

We showed that properties of heterogeneity and finiteness that are
present in SCHMs are not a part of the assumptions upon which
Amdahl’s Law is based. Ignoring these assumptions can hinder perfor-
mance-optimal design for SCHM systems and even microarchitecture as
well as other computer systems; designers can speed up one part of the
system, one task or program fragment, and inadvertently slow down the
system overall.

We motivate that research and design effort would be better focused
on processors that provide performance improvement for a broader set
of task types rather than the more narrow performance improvement tar-
geted by application specific processors. It may also be more advantageous
to invest effort in developing more sophisticated system-aware schedul-
ing rather than in using off the shelf schedulers and operating systems.
Finally, design strategies that partition in a global–local manner, rather
than a component-based, side-by-side manner should be pursued far more
than they are now – and away from current emphasis on component-based
design and the isolation of design concerns.

Fundamental assumptions that are consistent with Amdahl’s Law are
a heavily ingrained part of our computing design culture. This paper
points in a new direction. New tools and design strategies are required
that support holistic views, instead of divide and conquer approaches.

ACKNOWLEDGMENTS

This work was supported in part by ST Microelectronics, and the National
Science Foundation under Grants 0607934, 0606675, 0438948, and 0406384.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
NSF. The authors thank Don Thomas, Alex Bobrek, and Sean Pieper for their
feedback and suggestions. We also thank the reviewers for seeing the contribu-
tion of the paper and for their suggestions.



122 Paul and Meyer

REFERENCES

1. Are Single-Chip Multiprocessors in Reach? IEEE Design and Test, 18(1):82–89 (Jan–
Feb 2001).

2. W. Wolf, How Many System Architectures? IEEE Computer, 36(3):93–95 (March 2003).
3. T. Austin, D. Blaauw, S. Mahlke, T. Mudge, C. Chakrabarti, and W. Wolf, Mobile

Supercomputers. IEEE Computer, 37(5):81–83 (May 2004).
4. W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo,

A. A. Jerraya, and M. Diaz-Nava, Component-Based Design Approach for Multicore
SoCs, DAC, Proceedings of the 39th Design Automation Conference, New Orleans, LA,
pp. 789–794 (June 2002).

5. A. Sangiovanni-Vincentelli and G. Martin, Platform-Based Design and Software
Design Methodology for Embedded Systems. IEEE Design and Test, 18(6):23–33 (Nov–
Dec 2001).

6. C. Rowen, Engineering the Complex SoC, Prentice Hall (2004).
7. D. Goodwin and D. Petkov, Microprocessor Architecture: Automatic Generation of

Application Specific Processors, CASES, Proceedings of the 2003 International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems, San Jose, CA,
pp. 137–147 (October 2003).

8. A. Mihal, C. Kulkami, M. Moskewicz, M. Tsai, N. Shah, S. Weber, J. Yujia,
K. Keutzer, K. Vissers, C. Sauer, and S. Malik, Developing Architectural Platforms:
A Disciplined Approach, IEEE Design and Test, 19(6):6–16 (Nov–Dec 2002).

9. N. Clack, H. Zhong, and S. Mahlke, Processor Acceleration Through Automated
Instruction Set Customization, Proceedings of the 36th Annual International Symposium
on Microarchitecture, San Diego, CA, pp. 129–140 (December 2003).

10. Tensilica Inc., Xtensa Product Brief, http://www.tensilica.com (2002).
11. G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities, Proc. AFIPS Spring Joint Computer Conf. 30, Atlantic City,
NJ 30: 483–485 (April 1967)

12. J. L. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach,
3rd Ed., Morgan Kaufmann, pp. 40–41 (2003).

13. J. Paul, A. Bobrek, J. Nelson J. Pieper, and D. Thomas, Schedulers as Model-based
Design Elements in Programmable Heterogeneous Multiprocessors, DAC, Proceedings
of the 41st Design Automation Conference, San Diego, CA, pp. 287–292 (June 2004).

14. F. Karim, A. Mellan, A. Nguyen, U. Aydonat, and T. Abdelrahman, A Multilevel
Computing Architecture for Embedded Multimedia Applications, IEEE Micro, 24(3):
56–66 (May–June 2004).

15. P. Hofstee and M. Day, Hardware and Software Architectures for the Cell Proces-
sor, Proceedings of the 3rd International Conference on Hardware/Software Codesign and
System Synthesis, Jersey City, NJ, pp. 19–21 (September 2005).

16. D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey,
P. Harvey, H. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi,
M. Pham, J. Pille, S. Posluszny, M. Riley, D. Stasiak, M. Suzuoki, O. Takahashi,
J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa, Overview of the Architecture,
Circuit Design, and Physical Implementation of a First-Generation Cell Processor,
IEEE Journal of Solid State Circuits, 41(1):179–196 (2006).

17. M. J. Schulte, J. Glossner, S. Jinturkar, M. Moudgill, S. Mamidi, and S. Vassiliadis,
A Low-Power Multithreaded Processor for Software Defined Radio, Journal of VLSI
Signal Processing, 41:143–159 (2006).



Amdahl’s Law Revisited for Single Chip Systems 123

18. J. Madsen, K. Virk and M. J. Gonzales, A SystemC-Based Abstract Real-Time Operating
System Model for Multiprocessor Systems-on-Chip, in Multiprocessor Systems-on-Chip, A.
Jerraya and W. Wolf eds., Morgan Kaufmann (2004).

19. G. Buttazzo, Achieving Scalability in Real-Time Systems, IEEE Computer, 39(5): 54–59
(May 2006).

20. K. L. Heo, S. M. Cho, J. H. Lee and M. H. Sunwoo, Applcation-Specific DSP Archi-
tecture for Fast Fourier Transform, ASAP, Proceedings of the 14th International Con-
ference on Application-Specific Systems, Architectures, and Processors, The Hauge, The
Netherlands, pp. 369–377 (June 2003).

21. Embedded Microprocessor Benchmark Consortium, http://www.eembc.org
22. J. M. Paul, Donald E. Thomas and Alex Bobrek, Scenario-Oriented Design for Single-Chip

Heterogeneous Multiprocessors, IEEE Transactions on VLSI, 14(8):868–880 (August 2006).


